AI Demystification

elia group

JHIE

DialogGesellschaft

19 Juni, 2024 | Rachel Berryman, Elia Group

Goals

1. Know what AI can do and some common examples

2. Know what the various terms in the AI glossary mean and how to use them

- 3. Understand what a successful AI project requires how to find good use cases
- 4. Know Al's limitations and where it is not the best tool for the job

Question

What is AI? Give your definition

AI in Energy Transmission

What is AI?

There are many definitions of Al:

Our definition: Computer systems able to perform tasks that normally require human intelligence

Narrow AI

A computer system that is able to cope with any generalized task assigned to it-similar to human intelligence

General AI

What is AI?

Narrow AI: Executes specific tasks within set parameters (e.g., a chatbot handling customer service inquiries).

We are here

General AI (AGI): Mimics human cognitive abilities, adaptable to a wide range of activities (e.g., a robot capable of performing complex medical surgeries as well as composing music).

Super AI: Surpasses human intellect and abilities, excelling in all areas including creativity and emotional intelligence (e.g., an AI that innovates new scientific theories beyond human conception).

Al works by identifying patterns that exist in data

- Using data from the past, AI algorithms record patterns that exist in that past data.
- Goal is to find patterns that help predict a certain variable, or to find general patterns that exist but otherwise are hard to see (like in clustering)

[Phase 2: Model makes "Live" Predictions]

How are patterns in data found via AI?

Ingredients needed to "record" the patterns found in data:

- 1. A machine learning algorithm | think of this as a blank equation or newborn brain, waiting to learn relationships and things about the world
- 2. Training data: data from the past that's used to fit the equation, or train the newborn baby brain
- 3. Objective function: what the model should optimize for, how it "knows" it's doing a good job

Training Data

Experience	Outcome
Touched hot stove	Burned hand, pain signal
Walked into street without looking	Car honked, fear signal
Rode bike too fast down a hill	Fell off, pain signal
Touched hot stove	Burned hand, pain signal
Walked into street without looking	Car honked, fear signal
Approaches new street to	Looks both ways (to avoid
Cross	fear signal)

Untrained Algorithm

Trained Algorithm (Model)

How are patterns in data found via AI?

		Fea	 Target			
Training Data	Sq. Meters 350 120 60 200	Bedrooms 5 2 1 3	Bathrooms 4 1 1 2	Zip Code 10718 13567 14555 10382	Price (€) 550,000 200,000 148,000 310,000	
Prediction Data	Sq. Meters 130 40	Bedrooms 2 0	Bathrooms 1 1	Zip Code 10382 14678	Price (€) ? ?	

elia group

How Machine Learning works: training data + algorithm = trained model

What does ML do?

There is no one single AI (ML) **model.** A new AI model must be trained for each target variable, using unique past data that is relevant to that specific target value to predict.

Machine Learning (ML) uses past data to find patterns that can be used to make decisions in the future.

ML models are **representations of the pattern** between past data, and a target value that we want to predict.

Al can predict 3 categories of target values:

- 1. Numbers (energy prices, load)
- 2. Categories (Type of road sign seen in an image)
- 3. Actions (What action to do next to balance the grid)

Below are some examples of target variables AI can predict, and the past data used to train the model:

Target Variable	Data (features)
Solar power infeed	Weather, time of day, past solar infeed values
The next move to make in a game of chess	Current state of the board, value of all potential moves
What a customer will purchase	Demographic data, past purchases made
If an email is spam	Examples of spam emails, features of the email

What about Autonomous Driving?

Al Project Lifecycle

Al in Energy Transmission 14

Use Case areas for AI

Predicting continuous values

- Grid loss prediction
- Budget prediction
- Predicting stock prices

Predicting categories

- Customer segmentation
- Object recognition
- Customer churn predictor

Recommendation Systems

- Al Control Systems
- Al system for grid montioring

Natural Language Processing

- Chat bots
- PDF processing
- Sentiment Analysis

Outlier Detection

• Automatic reporting on outliers

When to use AI?

Question

What is Generative AI?

How is it different from "traditional" AI?

AI in Energy Transmission

Summary: AI Fundamentals

- All Al systems are made up of:
 - o Training data
 - Algorithm

 \bigcirc

- All AI systems today are narrow AI systems (complete one task using past data and examples of how that task was completed in the past
- Al models only show relationships inherent in the data they have seen in the past. If relationship is not there or badly modelled, model will not work!
- Training data can come from Elia Group (internally-trained model), or external (like ChatGPT)
- Al is not the right tool for every use case.

What about ChatGPT?

Difference between Generative AI and Traditional AI

	Output What is the result of the model	Training Data What data is the model output based on	ML Algorithm What algorithms are used	Objective What means the model is "good"?
Traditional Al	 Specific values (number or category) ex. Wind infeed in the next 15 mins, in MW 	• Elia Group-specific o ex. Past grid topologies, asset data, IoT sensor data	 Simple statistical methods ex. linear regression Advanced non-linear methods ex. Neural Networks 	 Business-related objectives ex. Reduce error in forecasts (in MW), improve accuracy of drone image classification
Generative AI	 New content in the form of text, image, and video ex. An image, which does not actually exist, based on prompts 	 All publicly-available data, plus proprietary data and prompts and outcomes from model use ex. online articles 	 Advanced non-linear methods ex. Neural Networks 	 Believability Outputs are optimized to be believably, not accurate

Question

job?

AI in Energy Transmission

Question

the job?

AI in Energy Transmission